nbfar: Negative Binomial Factor Regression Models ('nbfar')

We developed a negative binomial factor regression model to estimate structured (sparse) associations between a feature matrix X and overdispersed count data Y. With 'nbfar', microbiome count data Y can be used, for example, to associate host or environmental covariates with microbial abundances. Currently, two models are available: a) Negative Binomial reduced rank regression (NB-RRR), b) Negative Binomial co-sparse factor regression (NB-FAR). Please refer the manuscript 'Mishra, A. K., & Müller, C. L. (2021). Negative Binomial factor regression with application to microbiome data analysis. bioRxiv.' for more details.

Version: 0.1
Depends: R (≥ 3.5.0), stats, utils
Imports: Rcpp (≥ 0.12.9), MASS, magrittr, rrpack, glmnet, RcppParallel, mpath
LinkingTo: Rcpp, RcppArmadillo, RcppParallel
Suggests: rmarkdown, knitr, spelling
Published: 2022-02-22
DOI: 10.32614/CRAN.package.nbfar
Author: Aditya Mishra [aut, cre], Christian Mueller [aut]
Maintainer: Aditya Mishra <amishra at flatironinstitute.org>
License: GPL (≥ 3.0)
URL: https://github.com/amishra-stats/nbfar, https://www.biorxiv.org/content/10.1101/2021.11.29.470304v1
NeedsCompilation: yes
Language: en-US
CRAN checks: nbfar results


Reference manual: nbfar.pdf
Vignettes: Negative Binomial factor regression with application to microbiome data analysis


Package source: nbfar_0.1.tar.gz
Windows binaries: r-devel: nbfar_0.1.zip, r-release: nbfar_0.1.zip, r-oldrel: nbfar_0.1.zip
macOS binaries: r-release (arm64): nbfar_0.1.tgz, r-oldrel (arm64): nbfar_0.1.tgz, r-release (x86_64): nbfar_0.1.tgz, r-oldrel (x86_64): nbfar_0.1.tgz


Please use the canonical form https://CRAN.R-project.org/package=nbfar to link to this page.